Performance of multiple micro-perforated panels in a duct

نویسندگان

  • Y. LIU
  • Y. S. CHOY
  • Y. K. CHIANG
چکیده

Generalized formulation is developed analytically to calculate the transmission loss performance of a silencer by using multiple micro-perforate panel (MPP) array silencers in ventilation duct system. The device, based on single MPP design, consists of different expansion chambers with the side-branch cavities covered by micro-perforate panels of different properties. The theoretical model can also be simplified to evaluate the performance for normal plate silencer. With a preliminary result of two normal plates, it shows that the plate silencer can offer a wide stop band of 3.5 from low to medium frequency range when the length ratio is 1 to 4. Compared with same total length of a single plate, the stop band is improved by 25%. For the MPP silencer under similar condition, the stop band is also increased by 16%. Apart from the considerate increment of stop band, the bending stiffness requirement is also released by 35% and 40% respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the effect of shape on acoustic performance of micro perforated absorbent at low frequencies

Introduction: Micro-perforated absorbents are one of the structures that are widely used nowadays. The sound absorption mechanism is performed by viscous energy losses in the cavities on the plate. In this study, the acoustic properties of non-flat perforated panels in oblique angle was investigated in numerical method. Material and Methods: This paper examined the effect of the surface shape ...

متن کامل

Estimation of Sound Absorption Behavior of Combined Panels Comprising Kenaf Fibers and Micro-Perforated Plates below 2500 Hertz

Introduction: Natural materials are more efficient and attractive than synthetic materials. In this study, the sound absorption behavior by natural kenaf composite and Micro-Perforated Panel (MPP) at low and medium frequency region was investigated. Material and Methods: Initially, the results of kenaf fibers with a thickness of 10 mm were validated by the Finite Element Method (FEM) based on ...

متن کامل

Acoustic properties of 3D printed bio-degradable micro-perforated panels made of Corkwood Fiber-Reinforced composites

Introduction: Micro perforated panel (MPP) absorbents promise the next generation of sound absorbers as they have significant advantages over other porous adsorbents. In this study, we will investigate the acoustic performance of MPP absorbents made of biodegradable polylactic acid composite reinforced with natural corkwood fibers (PLA/Corkwood) by 3D printing technology. Material and Methods:...

متن کامل

Experimental and Numerical Study of Perforated Steel Plate Shear Panels

Thin perforated Steel Plate Shear (SPS) Walls are among the most common types of energy dissipating systems. The applied holes reduce the shear strength of the plate and allow to decrease the profile size of the members at the boundary of the panel when these systems are used in the typical design of structures. On the other hand, the different fracture locations of these panels are visible whe...

متن کامل

Boundary Condition for the Acoustic Impedance of Lightweight Micro Perforated Panels and Membranes

Theories of the acoustic impedance of micro perforated panels and membranes for normally incident waves have been well developed for decades. These theories are mainly based on the assumption that the particle velocity at the boundary of the hole wall is equal to zero. This assumption is valid when the panel/membrane is massive and does not vibrate. This paper aims to investigate the effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014